Ausreißererkennung für Einzelteil- und Kleinserien

Maschinen fehlerlos einfahren

Anomalie-Detektion bei der Drehbearbeitung von hybriden Bauteilen (Bild: IFW)
Anomalie-Detektion bei der Drehbearbeitung von hybriden Bauteilen (Bild: IFW)

Alle Signale zusammenführen

Um diesen Herausforderungen zu begegnen, wurde am IFW eine One-Class-Support-Vector-Maschine (SVM) zur Ratterdetektion eingesetzt. Diese kann Informationen aus unterschiedlichen Datenquellen zu einem sogenannten Score zusammenzuführen und Schwellwerte selbständig bestimmen. Als Eingangsgrößen für die SVM wurden die Signale von drei am Spindelschlitten applizierten Halbleiter-Dehnungsmessstreifen (H.-DMS) und die Antriebsströme der Maschinenachsen verwendet. Trainiert wurde die SVM mit den Daten von 15 ratterfreien Flankenfräsprozessen in Aluminium mit variierenden Vorschubgeschwindigkeiten, Schnitttiefen, -breiten und Drehzahlen. Durch eine Stufe im Werkstück wird nun die Schnitttiefe erhöht, sodass Ratterschwingungen entstehen. Die SVM erkennt das Rattern bevor Rattermarken auf dem Werkstück zu sehen sind. Plötzlich auftretende Prozessfehler wie Ratterschwingungen können also in der Lupenperspektive auch ohne aufwendige Berechnungen von Merkmalen und die manuelle Bestimmung von Schwellwerten erkannt werden.

Die Vogelperspektive

In der Vogelperspektive werden Prozesse durch eine Segmentierung in einzelne Prozessabschnitte unterteilt. Für die Überwachung werden dann ähnliche Prozesssegmente gemeinsam betrachtet. In Abbildung 2 ist der Verlauf der Schnittkraft in x-Richtung (Bild 2b) bei der Drehbearbeitung zu sehen. Bearbeitet wird dabei ein hybrides Bauteil (Bild 2a), das zum Teil aus Aluminium und zum Teil aus Stahl besteht. Für die Ermittlung der Schnittkraft wurden dabei im Werkzeugrevolver integrierte Dehnungsmessstreifen verwendet. Zur Simulation eines Materialfehlers wurde in das Werkstück eine Nut eingebracht, die durch einen Kraftabfall im Signal ersichtlich ist. Die Bearbeitung der unterschiedlichen Werkstoffe zeigt sich ebenfalls am Amplitude des Signals. Um die Signaländerungen durch den Fehler von unkritischen Signaländerungen zu unterscheiden, ist eine segmentweise Betrachtung des Signalverlaufs notwendig. Als Segmentgrenze wird dabei der Zeitpunkt gewählt, in dem der Übergang zwischen den beiden Werkstoffen stattfindet. Zur Fehlerdetektion wird anschließend ein Hampel-Filter innerhalb der einzelnen Segmente eingesetzt. Dieser analysiert die Signalvarianz in den Segmenten und erkennt Abweichungen im Signalverlauf. Dadurch können die im Werkstück eingebrachten Fehler erkannt werden, ohne dass Fehlalarme durch die Werkstoffübergänge ausgelöst werden (Bild 2 b).

Verschleiß ohne Daten erkennen

Die Überwachung langsamer Veränderungen, wie Werkzeugverschleiß, ist eine weitere Anwendung der Anomalie-Detektion in der Vogelperspektive. Dafür wurden die einzelnen Signalsegmente aus dem Drehprozess zunächst durch ihren jeweiligen Mittelwert normiert. Anschließend wurden statistische Merkmale, wie die Signalvarianz und der Signalmedian, für den gesamten Prozess berechnet und durch eine Hauptkomponentenanalyse (PCA) vereinfacht. Mit den Signalen von neun Prozessen mit arbeitsscharfem Werkzeug wurde eine One-Class-SVM angelernt. Bild 2c zeigt die dabei von der SVM gebildeten Clustergrenzen. Die Prozesse mit verschlissenen Wendeschneidplatten (rot) liegen außerhalb dieser Clustergrenzen und werden somit als Fehler erkannt. Durch die Anomalie-Detektion lässt sich Werkzeugverschleiß also selbst dann erkennen, wenn Daten von Prozessen mit verschlissenen Werkzeugen als Referenz fehlen.